
Ramen Finance
Audit Report

September 30, 2024

Conducted by:
Bogo Cvetkov (b0g0), Independent Security Researcher

1

Table of Contents

1. About b0g0... 3
2. About Ramen Finance.. 3
3. Risk Classification... 3

3.1. Impact..3
3.2. Likelihood... 4
3.3. Handling severity levels... 4

4. Executive Summary..4
5. Disclaimer.. 4
6. Findings.. 7

6.1. Medium Severity...7
6.1.1. Unstaking could be DOSed if lockPeriod is updated..........................7
6.1.2. Changing ramen token address can break unstaking for new deposits.................. 8
6.1.3. Deposits are allowed even after contract is revoked... 10

6.2. Low Severity...12
6.2.1. Array lookup might start reverting if it gets too big...12
6.2.2. Use safeTransfer instead of transfer..13

6.3. Governance.. 14
6.3.1. Governance Privileges...14

6.4. Informational.. 15
6.4.1. Insufficient validation..15
6.4.2. Gas optimizations.. 16
6.4.3. Emit events on important state changes..18

2

1. About b0g0
Bogo Cvetkov (b0g0) is a smart contract security researcher with a proven track
record of consistently uncovering vulnerabilities in a wide spectrum of DeFi
protocols. Constantly pushing the limits of his expertise, he strives to be a superior
security partner to any protocol & client he dedicates himself to!

2. About Ramen Finance
Ramen Finance is a Berachain-native token launchpad protocol powering liquidity
bootstrapping and price discovery for new assets.

3. Risk Classification

3.1. Impact
● High - leads to a significant loss of assets in the protocol or significantly

harms a group of users
● Medium - leads to a moderate loss of assets in the protocol or some

disruption of the protocol’s functionality
● Low - funds are not at risk

3

3.2. Likelihood
● High - almost certain to happen, easy to perform, or highly incentivized
● Medium - only conditionally possible, but still relatively likely
● Low - requires specific state or little-to-no incentive

3.3. Handling severity levels
● Critical - Must fix as soon as possible (if already deployed)
● High - Must fix (before deployment if not already deployed)
● Medium - Should fix
● Low - Could fix
● Governance - Could fix

4. Executive Summary
For the duration of 5 days b0g0 has invested his expertise as a security researcher
to analyze the smart contracts of Ramen Finance protocol and assess the state of
its security. For that time a total of 9 issues have been detected, out of which 0 have
been assigned a severity level of High and 3 a severity level of Medium.

5. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This e�ort is limited by time, resources, and expertise. My evaluation
of the codebase aims to uncover as many vulnerabilities as possible, given the above
limitations! Subsequent security reviews, bug bounty programs and on-chain
monitoring are strongly recommended!

4

Overview

Scope

5

Project Ramen Finance

URL https://ramen.finance/

Platform Berachain

Language Solidity

Repo https://github.com/ramenfinance/ramen-finance/
tree/master/contracts-ramenfinance/contracts

Commit
Hash

-

Mitigation 468f7f981ea7a136cfc4b45494afe117ee17b8e9

Dates 26 September - 30 September 2024

Contract Address

gRamen.sol -

ClaimTimelock.sol -

TimelockFactory.sol -

https://ramen.finance/
https://github.com/ramenfinance/ramen-finance/tree/master/contracts-ramenfinance/contracts
https://github.com/ramenfinance/ramen-finance/tree/master/contracts-ramenfinance/contracts

Issue Statistic

6

Severity Count

High 0

Medium 3

Low/Informational 6

Total 9

6. Findings

6.1. Medium Severity

6.1.1. Unstaking could be DOSed if lockPeriod is updated

Context: gRamen.sol
Description :
When a stake is created a lock time is calculated for it based on the lockPeriod variable :
Stake memory s = Stake({

amount: _amount,

stakedAt: uint64(block.number),

expiredAt: uint64(block.number) + lockPeriod

});

Later during unstaking the calculated expiredAt value is used to determine if any penalty
rate should be applied on the amount returned to the owner :
function getPenaltyRate(

address _addr,

uint256 _stakeIndex

) public view returns (Stake memory _s, uint256 _penaltyRate) {

Stake memory s = stakes[_addr][_stakeIndex];

. . .

if ((block.number - s.stakedAt) < lockPeriod) {

uint256 remainingWeeks = s.expiredAt - block.number;

. . .;

}

. . .

}

7

In case lockPeriod gets updated between stake() & unstake(), unstaking could be DOSed for
some time, due to an underflow error.

Here is a concrete example:
- lockPeriod is set to 16 weeks
- Alice stakes 100 ramen and expiredAt is set to block.number + lockPeriod
- lockPeriod is updated to 20 weeks
- Alice decides to unstake at week 17 and since 17 < 20, the if branch is activated
- if ((block.number - s.stakedAt) < lockPeriod)

- The calculation reverts, since 16 weeks (s.expiredAt) is deducted from 17 weeks
(block.number)

- uint256 remainingWeeks = s.expiredAt - block.number;

As result unstaking is blocked for the next 3 weeks, until the new lockPeriod has elapsed.
Recommendation
Consider saving the lockPeriod at the time of the stake in the Stake struct and use it to
calculate the penalty tax in order to prevent the above scenario.
Resolution:
Fixed - lockPeriod has been changed into an immutable variable

6.1.2. Changing ramen token address can break unstaking for new
deposits

Context: gRamen.sol
Description:
This is how stakes are created in the system:

8

function _stake(address _to, uint128 _amount) internal {

require(_amount > 0, 'stake: amount must be greater than zero');

//@audit-info - save ramen token address

Stake memory s = Stake({

amount: _amount,

stakedAt: uint64(block.number),

expiredAt: uint64(block.number) + lockPeriod

});

. . .

ramen.safeTransferFrom(msg.sender, address(this), _amount);

_mint(_to, _amount);

. . .

}

And this is how unstaking works:
function _unstake(

uint256 _stakeIndex

) internal returns (uint128 _remainingAmount) {

. . .

ramen.safeTransfer(msg.sender, s.amount - uint128(penaltyRate));

ramen.burn(penaltyRate);

_burn(msg.sender, s.amount);

}

Upon staking the amount and time of staking is saved inside the Stake struct. The current
ramen address in which the deposit is made is not saved in the Stake struct.
During unstaking the tokens that are returned to the owner are again based on the current
ramen token.

In case the setToken() function is used to change the ramen token address, the following
scenario is possible:

- ramen address is address(1)

9

- Alice stakes 100 ramen (address(1)) tokens
- ramen address is updated to address(2)
- Bob stakes 100 ramen(address(2)) tokens
- Alice unstakes and receives 100 ramen(address(2)) tokens
- Bob tries to unstake but he can’t, since Alice has taken his tokens

The probability of the above scenario is low, since the ramen token is not very likely to
change. However the functionality for that exists - setToken() - and in case it happens it
would seriously a�ect the integrity of the system
Recommendation:
If ramen is not expected to change, consider making the variable immutable and remove the
setter function.
If the team decides to keep the functionality, then consider saving the current ramen
address in the Stake struct, so that unstaking happens in the token that was used at the
time of staking.
Resolution:
Fixed - ramen has been changed into an immutable variable

6.1.3. Deposits are allowed even after contract is revoked

Context: ClaimTimelock.sol
Description:
The ClaimTimelock contract accepts deposits of particular token and allows them to be
claimed only after timelockStarted has been enabled and unlockTimestamp has elapsed :
function claim(address beneficiary) external nonReentrant {

require(timelockStarted, 'ClaimTimelock: timelock is not started yet');

require(vestedAmount[beneficiary] > 0, 'nothing to claim'); //checks

require(

block.timestamp > unlockTimestamp,

'ClaimTimelock: not yet unlocked'

10

);

. . .

}

The contract admin can enable the timelock through the startTimelock() function, which is a
one time operation:
function startTimelock(

uint256 _unlockTimestamp

) external onlyRole(DEFAULT_ADMIN_ROLE) {

require(

unlockTimestamp == uint256(0),

'ClaimTimelock: timelock already started'

);

unlockTimestamp = _unlockTimestamp;

timelockStarted = true;

}

The contract also implements a revoke() function, which sets the timelockStarted variable
to false - something that cannot be undone. This is intended to permanently disable any
claims. However there is nothing stopping deposit() from functioning. This means that if any
deposits are made after revoke() (consciously or accidentally) the amounts will get stuck in
the contract and have to be rescued by calling revoke() by DEFAULT_ADMIN_ROLE.
Recommendation:
Consider adding a check in deposit() if the contract has been revoked and revert with an
error.
Resolution:
Fixed

11

6.2. Low Severity

6.2.1. Array lookup might start reverting if it gets too big

Context: gRamen.sol
Description:
The contract uses the stakes[address] array state variable to store each new stake for an
address. The following view functions have been defined to get di�erent info about the
stakes:

- getStakes()
- getPenaltyRates()

Both of them loop through the whole stakes array, which might be problematic in case the
array gets too big. This is especially true for the getPenaltyRates() function, where
getPenaltyRate() gets called for each element.

Since the array only grows, there might be a scenario that if it gets too big and gas prices
are high the functions will revert. This might create problems for external parties that
integrate with the protocol
Recommendation:
A best practise when working with functions that loop through arrays is to provide start and
end indexes, so that the caller can control which parts of the array to iterate through.
Consider adding startIndex and endIndex parameters to the above functions.
Resolution:
Fixed

12

6.2.2. Use safeTransfer instead of transfer

Context: ClaimTimelock.sol
Description:
Using safeTransfer is considered best practise when transferring tokens - it makes sure that
there won’t be any problems if some non-standard ERC20 tokens are used (USDT). Currently
transfer instead of safeTransfer is used in the following functions of ClaimTimelock:

- revoke()
- claim()

Recommendation:
Consider using safeTransfer instead of plain transfer, to make sure you have covered
potential edge cases.
Resolution:
Fixed

13

6.3. Governance

6.3.1. Governance Privileges
Context: gRamen.sol
Description:
The contract DEFAULT_ADMIN_ROLE account has control over several variables that can
impact the outcome of a transaction:

- setToken
- setLockPeriod
- setStartDecay

Recommendation:
Consider incorporating a Gnosis multi-signature contract as the DEFAULT_ADMIN_ROLE and
ensuring that the Gnosis participants are trusted entities
Resolution:
Acknowledged

14

6.4. Informational

6.4.1. Insu�cient validation

Context: gRamen.sol
Description:
All issues related to validation are collected here to keep the report focused and easy to
read:

- Inside the constructor of gRamen contract validate that the _ramen parameter is not
address(0). It’s a simple guard that would prevent potential mistakes during
deployment

- Inside gRamen.restake() validate that the remainingAmount parameter is not 0

Recommendation:
Consider implementing the above mentioned recommendations
Resolution:
Fixed

15

6.4.2. Gas optimizations

Context: gRamen.sol
Description:
All issues related to gas are collected here to keep the report focused and easy to read:

- Inside gRamen.getPenaltyRate() move the decayPeriod calculation inside the if block,
to save a bit of gas when lockPeriod has expired

- Inside gRamen._unstake() consider adding an additional boolean parameter (bool
_sent) which can be used during restaking to save a substantial amount of gas.
Currently gRamen.restake() uses _unstake() which always transfers the ramen to the
owner, to only transfer it back in the same transaction for the new stake. Since the
ramen tokens are already in the contract, there is no need to transfer them back and
forth. Optimizing the flow would cut following gas costs:

- Transferring to the owner
- Transferring from the owner back to the contract
- Approval from the owner so that the contract can transfer back the ramen

An additional benefit is that the flow would be more intuitive from UI perspective -
users won’t have to give an additional approval and spend gas, before they restake. A
possible approach might look like this:
function _unstake(

uint256 _stakeIndex

bool _send

) internal returns (uint128 _remainingAmount) {

. . .

if (_send) {

ramen.safeTransfer(msg.sender, s.amount - uint128(penaltyRate));

}

. . .

return s.amount - uint128(penaltyRate);

}

16

function restake(uint256 _stakeIndex) external {

uint128 remainingAmount = _unstake(_stakeIndex, false);

Stake memory s = Stake({

amount: remainingAmount,

stakedAt: uint64(block.number),

expiredAt: uint64(block.number) + lockPeriod

});

stakes[msg.sender][_stakeIndex] = s;

—>> //ramen.safeTransferFrom(msg.sender, address(this), remainingAmount);

_mint(msg.sender, remainingAmount);

emit AddStake(s, msg.sender, _stakeIndex);

}

- Inside gRamen.unstake() consider checking if the stake was not unstaked already,
currently the whole flow with transfer and burning runs every time, even when
amounts are 0. Also an event is emitted each time. All of this wastes unnecessary gas
and emits empty events

- Remove the _setStake() internal function, since it is not used anywhere - this will
reduce bytecode size.

Recommendation:
Consider implementing the above mentioned recommendations
Resolution:
Fixed

17

6.4.3. Emit events on important state changes

Context: ClaimTimelock.sol
Description:
The following state changing functions do not emit events:

- deposit()
- claim()
- startTimelock()
- revoke()

It is considered a best practise to emit events, that mark changes in the state of the smart
contract
Recommendation:
Consider emitting relevant events in the above functions
Resolution:
Acknowledged

18

