
Document ID: v3.4-EXE-002 | Status: Final | Version: v3.4

v3.4-EXE-002 – Lifecycle Management & Twin Termination Logic
Document Title Lifecycle Management & Twin Termination

Logic
Version v3.4
Document ID v3.4-EXE-002
Date 2025-03-22
Author Take Back Your Data – Runtime

Governance Unit
Document Type Public / Certification / Internal

1. Purpose & Scope
This document defines the lifecycle handling of MaxOneOpen runtime twins and outlines
the logic for activation, transition, suspension and termination. It ensures that every twin
instance is controllable, traceable, and policy-bound throughout its execution window.

2. Twin Lifecycle States
State Description Trigger/Event
Pre-Load Twin is defined but inactive Triggered by control intent
Activation Twin is instantiated and

bound
Matched to task context

Execution Twin is processing
input/output

Normal runtime phase

Suspension Twin paused, memory
retained

Low activity or manual hold

Termination Twin container destroyed Quota reached or control
event

Verification Final hash + memory
destroyed

Audit signature protocol

3. Twin Termination Protocol
- Termination can be triggered by:
 - MaxControl policy
 - Timeout or quota breach
 - Manual admin signal
 - Memory violation or compliance alert
- Termination must:
 - Clear memory securely
 - Sign final state
 - Log hash reference
 - Self-destruct container

Document ID: v3.4-EXE-002 | Status: Final | Version: v3.4

4. Persistence Constraints
- Twin containers may not persist unless explicitly allowed
- Memory retention must follow certified policy templates
- No twin may write to uncontrolled shared memory
- Runtime state must be provable but not restorable

5. Auditability & Certification
Each deployment must implement full lifecycle trace logic per twin. Certification requires:
- Lifecycle logs (signed + hashed)
- Finalization protocol execution record
- No deviation from approved state transitions

6. Certification Relevance
Twin lifecycle logic is a core requirement for certified MaxOneOpen environments. Any fork
must include compatible state logic, termination behavior, and memory governance to be
eligible for certification.

