v3.4-EDG-002 — Decentralized Compute Graphs & Sovereign Twin
Execution Chains

Document Title Decentralized Compute Graphs & Sovereign
Twin Execution Chains

Version v3.4

Document ID v3.4-EDG-002

Date 2025-03-22

Author Take Back Your Data - Edge Architecture
Group

Document Type Public / Certification / Internal

1. Purpose & Scope

This document defines the use of decentralized compute graphs and sovereign twin
execution chains in MaxOneOpen forks. It ensures that execution logic remains fully peer-
driven, traceable, and certifiable across distributed edge environments.

2. Compute Graph Architecture

- Execution units (twins) form DAG-based compute graphs without central scheduler
- Task distribution is based on local availability, schema affinity and trust anchors

- Graph nodes must validate inbound and outbound edge operations via ZK-proofs

- Failure handling includes fallback chaining and sealed rollback logic

3. Twin Execution Chains

Chain Element Execution Function ZK Validation Logic

Initiator Twin Root node of execution Signed schema + token
scope

Compute Node Perform task / store output | Input/output trace match

Verifier Twin Validate + acknowledge Recursive replay hash
chain

Audit Capsule Snapshot + freeze trace Chain closure hash

4. Certification Hooks

- All forks must support decentralized compute graph logic and twin chaining
- Execution chains must be cryptographically traceable and policy-bound

- Failure recovery must be deterministic and certifiable

5. Certification Triggers

- Centralized orchestration or opaque chain logic disqualifies fork
- Missing execution trace validation or fallback ambiguity breaks compliance

Document ID: v3.4-EDG-002 | Status: Final | Version: v3.4

6. Certification Relevance

MaxOneOpen-certified forks must operate autonomously via distributed compute graphs
and verified twin execution chains. Peer-driven, certifiable execution is a baseline
requirement for edge-level certification.

Document ID: v3.4-EDG-002 | Status: Final | Version: v3.4

