
v3.4-STK-002 – Inference Stack & Runtime Design
Document ID: v3.4-STK-002 | Status: Final | Version: v3.4

Date: 2025-03-22

Author: Take Back Your Data – Runtime Core Unit

Document Type: Public / Certification / Internal

1. Purpose & Scope
This document defines the structure, components, and execution logic of the MaxOneOpen
inference stack. It enables technical teams to deploy optimized runtime environments
tailored to specialized twin modules.

2. Inference Components
- MetaLLM: Specialized model optimized for modular control
- Tokenizer / Detokenizer: Pluggable, hardware-adaptive
- Prompt Assembly Layer: Structuring system input with minimal latency
- Vector Handler: Optional embedding generation for memory/search
- Inference Core: Low-latency transformer execution unit
- Twin Execution Wrapper: Dynamic container, instantiates specialized twins

Versioning Matrix:

Component Version Update Path Maintainer Role

MetaLLM v1.2.0 Stable API LLM Core / Runtime
Core

Tokenizer /
Detokenizer

v0.9.3 Modular Swap Twin Integrator

Prompt Assembly
Layer

v1.1.0 Fork-per-Context Flow Maintainer

Inference Core
Engine

v1.0.5 Platform-Linked Hardware
Abstraction

3. Execution Flow
1. Input (user/system) is routed via prompt logic layer
2. Active twin container is spun up for relevant context
3. MetaLLM receives preprocessed token stream

4. Output is delivered back to system, user or logger
5. Process terminates or remains latent based on context policy

4. Runtime Optimization
- Models are optimized for context-short hops (low token window)
- Edge-first fallback minimizes inference delay
- Vector memory is optional and not required for functional use
- Hardware acceleration modularity (GPU/TPU/NPU/CPU/FPGA)
- Runtime logic is layered: init → execute → terminate/passivate

5. Inference Twin Typology
Twin Type | Purpose | Lifecycle
-----------------|---------------------------|----------------------------
Static Twin | Fixed-purpose, cached | Preloaded → Execute → Idle
Dynamic Twin | Task/context-specific | Spin up → Execute → Terminate
Shadow Twin | Observational/feedback | Activated via Control Layer
Failover Twin | Redundancy/fallback | Cold start on trigger event

6. Certification Relevance
All certified MaxOneOpen forks must implement the inference stack using the layered logic,
typology and lifecycle models defined here. Any deviation must be documented and justified
within the certification request.

