
v3.4-STK-003 – Modular LLM Architecture & Token Logic 
Document ID: v3.4-STK-003 | Status: Final | Version: v3.4 

Date: 2025-03-22 

Author: Take Back Your Data – Language Systems 

Document Type: Public / Certification / Internal 

 

1. Purpose & Scope 
This document defines the modular design of the MaxOneOpen LLM and the token logic 
used for optimized, sovereign inference and minimal compute costs. It ensures that LLM 
components can be adapted, extended, and validated independently while preserving global 
system compliance. 

2. Modular LLM Design 
- Model architecture is divided into interchangeable modules: 
  - Context Handler (pre-token logic) 
  - Core Transformer Stack (LLM) 
  - Control Adapter (external signal handling) 
  - Postprocessor & Signature Block 
- Modules can be optimized or replaced individually 
- Specialization is achieved by creating purpose-specific forks with reduced token windows 
 
Note: For detailed module-to-module interface specifications (data format, timing, payload), 
refer to Fork Blueprint §4.2. 

3. Token Logic & Cost Minimization 
- Token usage is measured via Token Work Unit (TWU): token + context + return 
- Each twin has a budget envelope (in tokens/sec or tokens/task) 
- Inference runtime applies token efficiency model: 
  - Early-exit if context saturated 
  - No token repetition / loop collapse 
  - Prompt chaining compressed into logical kernels 

4. Adaptability & Forking 
- Teams can fork specific modules (e.g. control adapter) without retraining the full model 
- Certified module hashes must be published and linked to the parent model 
- Forked models must register a new scope and describe divergence from standard logic 
 



Note: Implementation-specific variations and fork interfaces must comply with certified 
schemas (see Fork Blueprint §5.3). 

5. Token Contract Interface (TCI) 
TCI defines how token-based authorization and resource governance works: 
- Each twin must verify token quota before activation 
- Quota logic is protocol-verified (no runtime override) 
- TCI is publicly referenceable and cryptographically hashed 
- Prevents overuse, runaway compute, and multi-tenant interference 
 
Note: Detailed TCI protocol definitions, cryptographic interface bindings, and failover 
handling are available in Fork Blueprint §4.4. 

6. Certification Relevance 
All certified forks must declare their token logic and module layout. Token quota 
enforcement and modular traceability are mandatory for compliance. The use of TCI is 
required for all edge or distributed deployments. 


