v3.4-ZKP-001 — ZK-Primitives, Circuit Libraries & Privacy Anchors

Document Title ZK-Primitives, Circuit Libraries & Privacy
Anchors

Version v3.4

Document ID v3.4-ZKP-001

Date 2025-03-22

Author Take Back Your Data - ZK Sovereignty Lab

Document Type Public / Certification / Internal

1. Purpose & Scope

This document defines the foundational primitives, circuit logic and privacy anchors that
power Zero-Knowledge (ZK) functionality in MaxOneOpen. It ensures verifiable, sovereign-
proof logic without leaking private data or requiring central verification.

2. ZK Primitive Logic

- All forks must implement core ZK primitives (commitment, range proof, membership, set
equality)

- Primitives must be composable, field-tested, and circuit-compatible

- ZK usage must be deterministic, reproducible and schema-bound

- Forks may not rely on opaque cryptographic shortcuts or unverifiable optimizations

3. Circuit Library Design

Circuit Module Function Scope Validation Constraint
Schema Verifier Type match + input sealing | Hash + field zero check
Capability Prover Policy trace + token proof Set equality circuit
Timestamp Masker Time window blind logic Range check circuit
Identity Anchor Decoupled ZK-PKI proof Signature + root match

4, Certification Hooks

- Forks must use circuit libraries from auditable, open, and peer-validated repositories
- All ZK circuits must be schema-bound and version-traceable
- Private input must never leak via metadata, fallback logic or inference

5. Certification Triggers

- Non-auditable ZK primitives or opaque circuit logic disqualify fork
- Use of shortcut validation, fixed key schemes or privacy leakage invalidates certification

6. Certification Relevance

All MaxOneOpen forks must include Zero-Knowledge verification as core trust mechanism.
Only forks with auditable, reproducible and privacy-preserving ZK logic qualify for
certification.

Document ID: v3.4-ZKP-001 | Status: Final | Version: v3.4

