
Document ID: v3.4-COM-001 | Status: Final | Version: v3.4

v3.4-COM-001 – Zero-Trust Mesh Communication & Encrypted Twin
Channels
Document Title Zero-Trust Mesh Communication &

Encrypted Twin Channels
Version v3.4
Document ID v3.4-COM-001
Date 2025-03-22
Author Take Back Your Data – Sovereign

Communications Unit
Document Type Public / Certification / Internal

1. Purpose & Scope
This document defines the architecture and enforcement rules for zero-trust mesh
communication and encrypted twin channels in MaxOneOpen. It ensures sovereign, tamper-
proof and fully private communications across all distributed nodes and roles.

2. Mesh Architecture & Trustless Routing
- All communication must follow a dynamic, peer-authenticated mesh logic
- Trust is established per-message using identity tokens and channel seals
- Routing must avoid fixed intermediaries or centralized points of validation
- Any node may serve as ephemeral relay without access to message content

3. Encrypted Twin Channel Design
Channel Layer Security Function ZK Validation Path
Twin Session Init Context boot & channel

binding
Schema + entropy seal

Message Seal Payload encryption and tag Token + timestamp hash
Relay Proof Transit node ZK relay path Forward cert + drift anchor
Closure Logic Ephemeral exit trace TTL policy + sealed log

4. Certification Hooks
- All forks must implement sovereign messaging without trusted intermediaries
- Channel-level encryption and drift detection are required for all twin paths
- ZK-sealed communication anchors must be reusable for integrity verification

5. Certification Triggers
- Central relay use or unencrypted payload disqualifies fork
- Absence of traceable relay paths or unverifiable channel closures breaks certification

Document ID: v3.4-COM-001 | Status: Final | Version: v3.4

6. Certification Relevance
Only forks using fully trustless mesh communication with encrypted twin channels are
eligible for MaxOneOpen certification. All interactions must remain sealed, dynamic, and
unlinkable across execution chains.

