
Smart Contract Security Audit

Altcoinist Project

Author: Awalcon Hacker Team from CCTF DAO
Date: 2023.12.21.

1 | Awalcon Security Team

Table of Contents

Disclaimer..3
Executive Summary...4
Audit overview..5
Objective and methodology...6
Smart contracts and scenarios summary..7

Manual, fuzzing and symbolic execution test cases..8
Audit results...9

Critical severity...9
High severity...10

ECDSA signature replay attack on multi-chain scenario [Fixed].......................10
Medium severity..11

Unmatching values for SubscribeRegistry (docs!=code) [Fixed].......................11
Low severity..12

Locking balances through XPRedeem has a SPoF [Accepted]...........................12
Lack of LICENSES [Fixed]..13

Miscellaneous findings..14
Function declarations could be stricter..14
Further list of misc findings..15

Contact...17

2 | Awalcon Security Team

Disclaimer

The list of findings and recommendations are summarized in the Audit Results.

The matters raised in this report are only those identified during the review and are
not necessarily a comprehensive statement of all weaknesses that exist or all actions
that might be taken. This work was performed under limitations of time and scope
that are not potentially relevant to the actions of a malicious attack.

The review is based at a specific point in time, in an environment where both the
systems and the threat profiles are dynamically evolving. It is therefore possible that
vulnerabilities exist or will arise that were not identified during the review and there
may or will have been events, developments and changes in circumstances
subsequent to its issue.

The security analysis is purely based on the provided smart contracts alone. No other
products or systems have been reviewed. The purpose of the audit is to identify issues
related to the logic and quality of the code.

3 | Awalcon Security Team

Executive Summary

 The security code audit of the Altcoinist project revealed a robust and fairly secure
codebase, demonstrating strong understanding of best practices in smart contract
design.

 There were no critical vulnerabilities identified, affirming the contract's resilience,
however, the audit did uncover one high-level vulnerability. This issue, while
significant, is relatively straightforward to fix and does not undermine the overall
integrity of the contract.
 The recommended fixes are documented here and should be easy for the developer
to implement, further enhancing the contracts' security and performance.

 Overall, the audit's findings are positive, reflecting the developer's expertise and the
contracts’ sound architecture.

4 | Awalcon Security Team

Audit overview

The contracted project requested a security code audit on their new smart contracts
and on some of the changes they made after the first audit.

Start date of the audit: 2023.12.11.

Report date: 2023.12.21.

Project website:
Platform: Solidity / Ethereum L2
Code author:
Audited commit:

> sha256sum contracts.tar.gz
cb7861913b6bfd85d02c5aef5f933ffa60125bb7315d45e88db8669ae96f1382

Overall result: Pass

Auditors:

six ~ PGP 450F 4AC8 0BD8 ~ six@cryptoctf.org

def1dec0ded ~ 0xdef1dec0ded@cryptoctf.org

5 | Awalcon Security Team

Objective and methodology

The objective of the security assessment is to gain insight into the security of the
smart contracts listed in the scope.

Code review main check items:
• Line-by-line audit
• Business logic
• Data consistency
• Coding style violations
• Gas usage
• Reentrancy
• Test with automated tools:

• Static analysis with Slither
• Fuzzing with Harvey
• Symbolic execution with Myth

Further documents incorporated in the methodology:
• Smart Contract Weakness Classification Registry - https://swcregistry.io/
• https://github.com/miguelmota/solidity-audit-checklist

6 | Awalcon Security Team

https://github.com/miguelmota/solidity-audit-checklist
https://swcregistry.io/

Smart contracts and scenarios summary

The audit includes the following contracts:

• ALTT.sol – Main contract
• SubscribeRegistry.sol – Subscription handling contract
• SubstakingFactory.sol – Staking contract
• SubstakingVault.sol – Vault contract
• XPRedeem.sol – Redeeming tokens, including ECDSA logic

7 | Awalcon Security Team

Manual, fuzzing and symbolic execution test cases

Tool used for symbolic execution: Myth.

Tool used for fuzzing: Harvey

List of test scenarios

- Attacks against implementation of ECDSA cryptography (forging, replay, logic)

- Caller can redirect execution to arbitrary bytecode locations

- Caller can write to arbitrary storage locations

- Delegatecall to a user-specified address

- Control flow depends on a predictable environment variable

- Control flow depends on tx.origin

- Any sender can withdraw ETH from the contract account

- Assertion violation

- External call to another contract

- Integer overflow or underflow

- Multiple external calls in the same transaction

- State change after an external call

- Contract can be accidentally killed by anyone

- Return value of an external call is not checked

- A user-defined assertion has been triggered

8 | Awalcon Security Team

Audit results

Critical severity
No critical severity issue have been found during the manual code review or by using
automated tools.

9 | Awalcon Security Team

High severity

ECDSA signature replay attack on multi-chain scenario [Fixed]

Description and exploitation

The chain ID is not checked on the XPRedeem smart contract at the
redeemXP() function.

If there is no test network or any way to get a valid signature from the
backend, this is not exploitable. However, in case of a public test run or any
other scenario where a valid signature appears publicly, it opens up to
possibility to use it on any chain. This can leak to invalid amount processed
on the attacked smart contracts.

Exploitation: copy the signed data and transact it on another chain.

Recommendation

Check the Chain ID and the smart contract address. Example for the first:

function getChainID() external view returns (uint256) {

 uint256 id;

 assembly {

 id := chainid()

 }

 return id;}

Reference

https://eips.ethereum.org/EIPS/eip-155

10 | Awalcon Security Team

https://eips.ethereum.org/EIPS/eip-155

Medium severity

Unmatching values for SubscribeRegistry (docs!=code) [Fixed]

Description and exploitation

Numbers does not match the Gitbook (80% goes to author is mentioned no
that 32% goes to ref if there is a ref - the 32% is too much, one is too tempted
to set up a referral pool contract - poor protocol design). The number 32 is not
in the Gitbook at all.

R ecommendation

Decide on the correct values and change the docs or the code.

11 | Awalcon Security Team

Low severity

Locking balances through XPRedeem has a SPoF [Accepted]

Description and exploitation

The XPRedeem smart contract relies on a single signer in the background
that potentially locks balances and can only by recover itself (the
offchainSigner).

The “offchainSigner” can’t tell upfront what is the amount of ALTT required for
the payouts. A lot may get stuck in the contract in an irrecoverable way if
users redeem early.

Users either must trust the signer fully to provide "refill" the contract form time
to time or the signer needs to provide the full promised amount to all users
along with a signed longer deadline proof.

Also, the signature contains msg.sender implicitly so it would be more
"unexpected-user-error-prone" to add the address in the signature to the
parameters of the function call.

Recommendation

• Consider using only backend’s system as the smart contract seems to
be an extra layer that is not making it more decentralized and opens up
the potential locked balances.

• Change it to be less centralized.

12 | Awalcon Security Team

Lack of LICENSES [Fixed]

Description

Licenses are not defined in XPRedeem smart contract and the git repository
also has LICENSE.md missing.

Proposed solution

Provide a business compatible license for the whole project.

13 | Awalcon Security Team

Miscellaneous findings

Function declarations could be stricter

Description

We found functions can be declared as external, for more limited access.

This is considered low because the project will known to have slight changes
before deployment, and these declarations might have a more serious impact
on the future version.

Reference

https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-
that-could-be-declared-external

14 | Awalcon Security Team

https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-external
https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-external

Further list of misc findings

• We highly recommend to run swap tests after public deployment
because there are differences between the L1 and L2 implementations.
Some of these might actually break logic or functionality. Only
announce the project after carefully testing all functionalities!

• SubscribeRegistry: Why cant the user preemptively subscribe/extend
subscription expiration? require(expiry < block.timestamp, "AS") should
take > of the timestamp, expiry and add the amount to that one. This is
not user-friendly and they might miss important content for them! Make
sure to add replay attack protection when implementing the +time for
the subscription.

• Centralization: you really need to make sure that the owner/admin
accounts are actually not handled by a single entity. This is not on the
smart contract side now, but could be, eg.
https://github.com/Qrucial/Voronoi-Docs

• ReentrancyGuard is not needed as ALTT transfers has no callback
hook, though better have it then not, this will slightly increase gas
usage.

• ERC20Permit is replayable, usage is not recommended. We list it at
misc as it is know to be an optional future for the project. If it won’t get
deployed, there will be no problem.

• ALTT addLiquidity()’s return: why return anything when ret? Value is not
used and increases gas costs. Compiler optimization may cut this. Not
a security risk.

• ALTT amount0Min: Why not equal amount0toMint? It makes the owner
able to start the pool 2 % below target price.

• SubstakingVault: probably in init() could also require _name != ""

• Swapwethforaltt: “amountOutMinimum: 0” - this could be potentially
frontrunnable. However it doesn’t seem to be a realistically worthy
attack.

15 | Awalcon Security Team

https://github.com/Qrucial/Voronoi-Docs

• SubstakingVault: Why return amount is depositweth? The caller knows
the ret val anyways.

• SubstakingVault: What will make this not to revert, how will it be:

◦ >0? : require(wethBalance > wethDepositSum && wethDepositSum > 0);

◦ After TGE, no ETH is passed to the pool, before TGE,
wethbalance=wethdepositsum, who will deposit the additional
WETH?

• SubscribeRegistry: This line is redundant as the transfer would fail w/o
this, too: require(weth.balanceOf(sender) >= basePrice, "IB");

• SubscribeRegistry: It would be likely more gas efficient to first transfer
all amount to the Registry, then safetransfer to red and author and
team.

• SubscribeRegistry: This will always pass, unless the tx reverts so
unnecessary gas. require(sent == toPool);

• Why approve and transfer? Why not just altt.transfer?

◦ TransferHelper.safeApprove(address(altt), factory.vaults(author), alttReceived);

◦ TransferHelper.safeTransfer(address(altt), factory.vaults(author), alttReceived)

• SubscribeRegistry: The team does not trust their own token to receive
their share in it, same applies to author:

◦ weth.safeTransferFrom(sender, teamAddress, toTeam);

16 | Awalcon Security Team

Contact

Awalcon Team – six

Website: https://awalcon.org/

E-mail: six@cryptoctf.org

Git: https://git.hsbp.org/six

PGP: B1F7 B1D6 8838 98B4 2212 1D90 CA71 D1E4 078E 99C5

Awalcon Team – mPeter

Website: https://awalcon.org/

E-mail: mpeteriii@cryptoctf.org

17 | Awalcon Security Team

https://awalcon.org/
https://git.hsbp.org/six
https://awalcon.org/

